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Abstract. A generalised Gibbs equation for viscous, incompressible fluids is proposed. It 
takes into account the dependence of the entropy on the viscous pressure tensor. When the 
restrictions of the objectivity principle are imposed on the phenomenological equations, the 
expression for the pressure tensor is seen to be equivalent to that of second-order fluids. 

1. Introduction 

Some authors (Gyarmati 1977, Jou 1978, Lambermont and Lebon 1973, Lebon 1978, 
Muller 1966) have proposed for some thermodynamic systems a generalised Gibbs 
equation which relaxes the hypothesis of local equilibrium by assuming that the entropy 
may depend on quantities that vanish in equilibrium, such as dissipative fluxes. On the 
basis of such a generalised Gibbs equation and in the framework of irreversible 
thermodynamics, they obtain constitutive equations that avoid the paradox of infinite 
speed wave propagation of perturbations, While Gyarmati (1977), Lambermont and 
Lebon (1973) and Muller (1966) are restricted to linear phenomenological laws, Lebon 
(1978) introduces some non-linear terms into the phenomenological equations; Lebon 
also proposes that the phenomenological laws are objective (Truesdell and No11 1965, p 
44). In this work a more general theory is proposed (Jou 1978) in which the non-linear 
terms are obtained from general representation theorems of isotropic tensorial 
functions (Truesdell and No11 1965, p 27). While the formulations of extended 
irreversible thermodynamics described above deal with effects that are in general 
difficult to observe experimentally, such as relaxation in heat conduction, the one 
proposed here deals with phenomena that are easily observed in flows of liquids, such as 
polymer solutions, which have attracted much interest in recent years (Astarita and 
Marrucci 1974). 

2. The generalised Gibbs equation and the constitutive relation 

We consider a viscous, incompressible fluid in the absence of heat flux. The specific 
entropy s is assumed to be a function of the specific internal energy U and also of the 
viscous pressure tensor k’, whose traceless character is indicated by means of the upper 
index . The state of the system will be characterised by the velocity tr and the 
thermodynamic variables U and k’. Therefore, to obtain a complete description of the 
system we need the evolution equations for these variables. The evolution equations 
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for U and U are the well-known balance equations of momentum and energy, which are 
respectively 

( 1 )  pi, = -V . P+pF 
and 

pU = -8’ : Q + p r ,  

to which the constraint of incompressibility has to be added by means of the continuity 
equation 

v . u = o .  (3) 
In these equations p is the constant density, P is the total pressure tensor, assumed to be 
symmetric, 8’ is the viscous pressure tensor, 0 is the deviation part of the rate of 
deformation tensor, F is the external force acting on the unit of mass and r is the energy 
radiated by the unit of mass. In the following, we shall assume that both F and r vanish 
identically. 8’ is related to P by 

p=p- P U ,  (4) 

where p is an undetermined scalar giving the hydrostatic pressure, which cannot be 
identified with thermodynamic pressure as this is not defined in an incompressible fluid. 
The colon denotes as usual the double contraction of the corresponding tensors. 

Of course, this set of five equations is not sufficient because it involves ten 
unknowns. Therefore, five supplementary equations are needed to determine the 
evolution of the system. In the usual description of hydrodynamics, the five missing 
equations are the constitutive relations giving 8’ as a function of 9. In the present work, 
however, the tensor 8’ is an independent variable and the five missing equations are its 
evolution equations. To establish them, we start from the following generalised Gibbs 
equation: 

( 5 )  ds = T-’ du - T-’W : d8’ 

where the temperature T and the coefficient T-’A  are given by the corresponding state 
equations: 

T-’(u, 8’) = (as/au)p., 

T-’A(u, p) = (as/#”).. 

In an isotropic system, these state equations have the general form 

where U is the unit tensor, and a. and a1 are in principle scalar functions of U and the 
scalar invariants of 8’, namely I2 = tr8” and 4 = t rp3 .  We shall limit ourselves to a 
second-order theory in the dissipative flux @”. We speak here of order in the following 
sense: 8’ contains quantities of first, second and successive orders; the first space-time 
derivatives of U are considered to be first-order quantities; the first space-time 
derivatives of 8’ and the second space-time derivatives of U are assumed to be 
second-order quantities, and so on. Up to the first order, the state equations (7) reduce 
to 

T - ’ a  = zm ( u ) T ~ L . ~ ~ .  8’. (8) 7’-’ = T-1 
loc.eq., 
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Tloc.eq. is the temperature in the local equilibrium hypothesis corresponding to the value 
of U .  From here on, when we speak of temperature T it will be understood to be the 
local equilibrium temperature which can be measured using a sufficiently rapid and 
localised thermometer. Taking ( 5 )  and (7) into account we obtain for the time 
derivative of the entropy 

p i  = T-'pri - T- 'a(P) ' ,  (9) 

where the dot denotes the usual material time derivative. Introducing the energy- 
balance equation (2) with r = 0 into (9), we obtain 

p i  =-T-'8':{Q+(Y(BV)'}, (10) 
and this expression is the entropy production since there is no entropy flux in the 
absence of a heat flux. 

Our aim is to obtain (8')' in terms of the variables U, U, 8' and their spatial 
derivatives. The objectivity principle (Truesdell and No11 1965, p 44) states that the 
corresponding equation must be frame-indifferent, i.e. invariant with respect to rigid- 
body motions. The only non-objective term in (10) is the material time derivative of the 
tensor p, so that in order to obtain frame-indifferent constitutive equations this has to 
be substituted by an objective time derivative. Amongst the various objective time 
derivatives we select the co-rotational derivative (Astarita and Marrucci 1974, p 94), 
defined as 

(8');': = (8'). + w. 8' - 8'. w, 

w,] = f ( a v j / a x i  - aV, /ax , ) .  

(11) 

where W is the antisymmetric part of the velocity gradient with Cartesian components 
given by 

(12) 

We adopt the definition (11) because it keeps the entropy production term (10) 
invariant and because it has a well-defined physical sense since it is equal to the 
variation of 8' in a system which translates and rotates with the fluid. 

The entropy production term (10) is seen to be a bilinear form in 8' and Q +  a (8')". 
Since we are interested in the evolution equation for 8' we assume that 0 + a (p)" is a 
function of 8'. The most general form of this dependence in an isotropic system is: 

Q+a(8'):1: = K J . J + K ~ B V + K ~ B V ~ ,  (13) 
with the K~ scalar coefficients depending on U and the scalar invariants of BY. Since we 
are restricting ourselves to second-order terms in the constitutive equation, K~ will be a 
function of U and 1 2 ,  and K~ and K~ functions of U only. Introducing (13) into (10) we 
find 

U - T - ' ( K 1 1 2  + K 2 1 3 )  2 0. (14) 
Let us now examine the restrictions imposed on (14) by the second principle. The 
invariant IZ is an intrinsically positive quantity, while I3 may have any sign. Therefore, 
since K I  and K Z  are functions only of U ,  the inequality (14) implies 

K 1 G 0  and K 2  = 0 (15) 

while K O  = t r (p ) ' ,  and therefore it gives the time evolution of the scalar pressure p .  It 
may be remarked that if K~ = 0 the entropy production term (14) is 

u ~ - - ~ - ' K ~ ~ ~ : p .  (16) 
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This is not to be confused with the expression of cr in the classical linear theory of 
irreversible thermodynamics in which the viscous pressure tensor s’ is substituted by its 
first-order approximation s’“’. It can be seen from (16) that the reversible situations 
correspond to the cases 8’ = 0 and K~ = 0, which in a first-order approximation may be 
identified respectively with perfect incompressible fluids and with elastic incompres- 
sible isotropic solids with the coefficient cy related to the Lam6 constant G by cy = 2G. 

Taking into account (15), (13) reduces to 

(Bv):’: = c y - 1 ( K , 8 ’ - Q + K o U )  (17) 

which, if interpreted as a constitutive equation giving s’, contains as a first-order 
approximation the Navier-Stokes linear law 

s’(1’ = 4 @ Q  (18) 

in which p is the shear viscosity. Introducing this first approximation into the left-hand 
side of (17), and neglecting third-order terms, we obtain for the second-order approxi- 
mation 

(19) 

Equations ( l ) ,  (2) and (17) determine the evolution of the variables U, U and s’, 
respectively, in terms of U, U, s’ and their spatial derivatives and therefore they give a 
complete description of the system provided that suitable initial and boundary values 
are specified. 

fW2) = -2cLQ + 4p2a (Q):’:. 

3. The constitutive equation of second-order fluids 

With the assumption that the viscous pressure tensor depends on the rate of defor- 
mation tensor, Reiner and Rivlin (Truesdell and No11 1965, p 477) have obtained for 
the corresponding constitutive relation in isotropic systems the general equation 

(20) 

in which the coefficients yi are functions of U and the scalar invariants of Q. While this 
equation predicts normal-stress effects which are excluded from the classical Navier- 
Stokes formulation, it leads to an equal value for the two normal-stress viscometric 
functions, in contradiction to experiments with some fluids, for example polyisobutilene 
solutions (Coleman et a1 1966). In order to avoid this limitation, Rivlin and Ericksen 
(Truesdell and No11 1965, p 481) proposed a more general constitutive equation of the 
kind 

s’ = you + y1Q + y2Q2 

P=s’ (Al ,AZ, .  . . ,A,),  (21) 

defining the fluid of the n-differential type, where A,,, is the objective Rivlin-Ericksen 
tensor of order m. In isotropic systems, and up to second order, equation (21) reduces 
to 

(22) 8’ = &,U -@A1 +PIA: +/32A2 

with A1 and A2 given by 
A 

Ai  = 2V and A2 = A1 = (A,) ’ -  ( V U ) ~ . A ~  - A I  .(VU), (23) 

where A1 is the objective convected derivative of Al. The constitutive equation (22) 
A 
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predicts different values for the normal-stress viscometric functions, and therefore it is 
suitable for the description of fluids such as polymer solutions, as long as memory effects 
can be neglected. 

Dunn and Fosdick (1974) have studied the thermodynamic restrictions imposed by 
the second law on the constitutive equation (22) when the coefficients pi are indepen- 
dent of the invariants of 9, and they have found, amongst various other results, that the 
viscosity is non-negative, i.e. (U > 0, and that the normal stress coefficients p1 and pz are 
related by p1 = -&. With these restrictions, equation (22) reduces to 

P = - & A ~  +p2(A, + w.A1 - A ~ .  w). (24) 

The equivalence between (24) and (19) is easily established with the identification 

Therefore the simple formulation that we have proposed here leads in a straight- 
forward way to a phenomenological equation that predicts a difference in the normal- 
stress viscometric functions as long as one is interested in second-order effects in the 
pressure tensor, whereas the developments in rational thermodynamics do not neces- 
sarily lead to this conclusion in the same approximation. 

2 2p,=4& a. 

4. Conclusions 

Starting from a generalised Gibbs equation which takes into account a dependence of 
the entropy on the viscous pressure tensor, we have developed a formulation of 
extended irreversible thermodynamics for viscous and incompressible fluids. The 
principal features of our development are: 

(1) The generalisation of previous formulations of ‘extended irreversible ther- 
modynamics’, whose constitutive equations are essentially linear, to a non-linear 
theory. 

(2) The application of generalised irreversible thermodynamics to easily measured 
phenomena (e.g. viscous effects in polymers), while previous theories stressed their 
interest in more academic phenomena such as the finite velocity of propagation of heat 
signals. 

(3) The dynamical interpretation of the second-order constitutive equation, which 
is seen as an evolution equation for the viscous pressure tensor, rather than an 
expression of it in terms of V and its derivatives. This feature is due to the fact that in 
our formulation the viscous pressure tensor is an independent variable of the entropy. 

(4) The obtainment of constitutive equations equivalent to those of second-order 
Rivlin-Ericksen fluids from a Gibbs equation in the framework of generalised irrever- 
sible thermodynamics when the objectivity principle is taken into account. 

It seems, in consequence, that extended irreversible thermodynamics is able to deal 
with such systems as second-order fluids which in recent years have been of great 
practical and theoretical interest. 
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